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1.   INTRODUCTION 

Aircraft and spacecraft include a multitude of components 

which may be adversely affected by vibrations.  For example, 

vibrations may cause airframe or engine parts to suffer premature 

fatigue fracture, images in optical systems to blur, instrumen- 

tation to malfunction, and laser weapons to become ineffective. 

The control of vibrations and their effects therefore is a 

significant aspect of aerospace system design and development. 

Much work has been done on the design of vibration-resistant 

structures, as well as on technigues for vibration reduction. 

These technigues include the well-known vibration isolation 

approach, detuning (i.e., selecting configurations with small 

vibration responses to the excitation of concern), the more 

recently developed methods for increasing the vibratory energy 

dissipation capabilities (structural damping) of components, and 

local additions of vibration-suppressing masses or dynamic spring- 

mass systems (absorbers).  All of these classical approaches have 

been studied rather thoroughly, and the limits on their effective- 

nesses and ranges of applicability are reasonably well known. 

However, there has recently been developed the concept of 

broadband vibration absorbers, which promises to provide simple 

and practical vibration control means that not only are highly 

effective over a broad freguency range, but also relatively easy 

to apply in practical retrofit situations.  It is the purpose of 

the present report to summarize the results of an exploratory 

investigation of this novel vibration reduction means. 

Section 2 presents a brief discussion of the basic princ- 

iples of dynamic absorbers, both of the conventional and of the 

broadband (waveguide) type.  In Section 3 there is developed a 

general expression for the structural damping provided by any 

type of attached dynamic system.  Section 4 presents an analysis 

of a tapered beam, which represents a tractable approximation to 

flexural waveguide absorbers that appear to be most practical. 



Section 5 summarizes the results of some corresponding explora- 

tory experiments, and Section 6 presents conclusions and 

recommendations. 



2.   BASIC PRINCIPLES OF DYNAMIC ABSORBERS 

2.1  Conventional Absorbers 

Dynamic vibration absorbers, which often are also called 

"tuned dampers," have been studied and applied extensively.  They 

are discussed in handbooks (Ref. 1), as well as in classical 

textbooks (Refs. 2 and 3).  Such an absorber in essence consists 

of a mass that is attached to a primary vibrating system via a 

spring or similar resilient element.  It is well known that the 

addition of such an absorber to a dynamic system can alter the 

system's vibration characteristics significantly, particularly at 

frequencies in the vicinity of the absorber resonance. 

Such classical dynamic absorbers essentially are useful only 

in situations where the system vibrates at a single constant fre- 

quency.  By "tuning" the absorber to this frequency - that is, by 

adjusting the absorber mass and spring stiffness so that the 

absorber's resonance frequency coincides with the disturbing fre- 

quency - one may drastically reduce the system motion at the 

absorber attachment point.  This reduction results because at its 

resonance frequency such an absorber essentially generates at the 

attachment point an oscillatory force that acts against the 

motion of the primary system.  However, the desirable vibration 

reduction effect of such a dynamic absorber is confined to a 

limited frequency band in the vicinity of the absorber's reso- 

nance.  The addition of damping to the absorber's spring element 

tends to broaden the frequency band over which the absorber is 

effective (and also to reduce its maximum effectiveness); never- 

theless, at frequencies outside of this band the effect of the 

added absorber is either detrimental - in that it increases, 

rather than decreases, vibrations - or it is negligible. 

Some limited investigations have been carried out of absorb- 

ers with distributed properties - that is, of absorbers consist- 

ing of elastic rods, beams, or plates, rather than of "rigid" 

masses attached to "massless" springs (Refs. 1, 4, 5).  Such 



distributed parameter absorbers exhibit a multitude of resonances 

and at each resonance act somewhat like a classical mass/spring 

absorber; they thus can inhibit vibrations of the primary system 

in a multitude of frequency bands, but they also increase these 

vibrations in a multitude of bands.  Designing such absorbers so 

that their attenuation bands match the frequencies of concern is 

difficult and usually impractical. 

2.2  Waveguide Absorbers 

All of the aforementioned studies indicate that dynamic 

absorbers which depend on their resonant responses for their 

effectiveness can be useful only in relatively narrow and well- 

defined frequency ranges.  This conclusion may also be reached 

from more general considerations of vibrating systems (Ref. 6). 

Vibration absorbers that do not depend on their resonant 

responses, but which essentially extract energy from a vibrating 

system by waveguide action, have the potential for attenuating 

vibrations over wide frequency bands.  A "waveguide" is simply a 

structural system - such as a beam, torsion bar, or plate - along 

which vibrational waves can travel.  If one end of a waveguide is 

attached to the structure whose vibrations are to be controlled, 

and the other end is provided with a suitable energy dissipation 

arrangement (as illustrated schematically in Fig. 2), then this 

arrangement may be expected to extract vibratory energy from the 

structure of concern, thus reducing its vibrations. 

Realization of the waveguide absorber principle may be 

illustrated in terms of a damped rod, as shown schematically in 

Fig. 3.  One end of this rod is attached to the structure whose 

vibrations are to be reduced, and there is provided some damping 

arrangement, such as a coating of viscoelastic material.  As the 

structure vibrates, it causes compressional waves to propagate 

along the rod; thus, the absorber conducts energy away from the 

structure.  Due to the damping, the amplitude of the waves 



decreases as they propagate - and if the damping per wavelength 

is great enough and the rod length encompasses many wavelengths, 

then waves reflected from the end of the rod return little energy 

to the attachment point.  In this case the rod essentially 

exhibits no resonances and behaves in effect like an infinitely 

long rod that conducts energy away from the driving point. 

In order to save weight and also enhance the effectiveness 

of damping treatments, one may consider use of a tapered rod (see 

Fig. 4) instead of one of uniform cross-section.  In such a rod, 

the narrowing of the cross-section causes the amplitudes of waves 

to increase as they propagate away from the wider end, thus 

improving the dissipation of energy by the damping arrangement. 

It should be noted that the tapered structural components as 

waveguides, which have been studied previously (e.g., Ref. 7) and 

are further investigated in the present report, only facilitate 

the practical realization of waveguide absorbers, but that wave- 

guide absorbers in principle need not be tapered. 



3.   DAMPING CONTRIBUTION FROM ATTACHED SYSTEMS 

3.1  Energy Transfer 

The impedance Z^ of a system that is to be attached to a 

vibrating structure at a given point is defined as the ratio of 

the phasor F of the force acting on the system to the phasor V of 

the resulting velocity at the driving point 

Z^ = R^ + jj^ = F/V   . (3-1) 

The instantaneous power entering the system at the driving point 

is given by 

P = Re(Fe^"^} • Re{Ve^<^^}  , (3-2) 

from which expression one may evaluate the energy D taken on by 

the system in one cycle, namely 

T 
D = /  Pdt (3-3) 

0 

where   the   period  T  obeys 

T   =   2TT/a) (3-4) 

and  (JO denotes the radian frequency.  From the foregoing 

expressions one finds after a little manipulation that the energy 

transferred to the system is given by 

TTR 
D=-^V2 (3.5) 

where V  represents the magnitude |v| of the phasor V. 



Consider the structure to which the system is to be attached 

to be vibrating sinusoidally in time, with a velocity distribu- 

tion given by v(x ,y )e^'^*^.  Let V^ = v(Xg, y^) represent the 

velocity phasor at the attachment point on the structure, and let 

Zg denote the impedance of the structure at that point.  A force 

with phasor F acting on the vibrating structure at this point so 

as to impede its motion then changes the velocity of this point 

to 

V = Vg - F/Zg   . (3-6) 

If this force is due to an attached system, which moves with the 
same velocity V as the structure and which has an impedance 7^, 

then 

F = Z^V   . (3-7) 

By combining Eqs. 3-6 and 3-7 one finds that both the attached 

system and the structural attachment point vibrate with the 

velocity 

A  s 

In view of Eq. 3-5, the energy that the attached system 

extracts from the vStructure (per cycle) is found to obey 

D  =  —^   S  (3_g^ 
^      |1+Z /Z |2 

where R^ denotes the real part of the impedance Z^ of the 

attached system, as implied by Eq. 3-1. 

3.2  Contribution to Structural Loss Factor 

The loss factor n of a structure is defined in terms of the 

energy loss per cycle D and the energy W of vibration as 



n =^  . (3-10) 

This energy of vibration is defineci as the sum of the total 

kinetic and potential energies in the structure at any instant. 

In the steady state, where no net energy is added to the struc- 

ture or removed from it, the energy of vibration is constant and 

egual to the kinetic energy at the instant the kinetic energy is 

at its maximum (and the potential energy is zero).  If the 

structure vibrates in a single mode, all points on the structure 

move in phase, reaching their velocity (and displacement) maxima 

simultaneously.  For this case, then, 

W = -^ f yv2 dxdy = i M v2 (3-11) 
2. 0 ^  S Q 

where y = y(x,y) denotes the mass distribution per unit area 

and V  = V (x,y) represents the magnitude of v(x,y).  The inte- 
0    0 _- 

gration extends over the entire structure, and v^ denotes the 

mass-weighted spatial average of v2(x,y), 
0 

/   yv^dxdy        J   vjv2dxdy 
v2   =     =    (3-12) 

M 
0 /   udxdy s 

and Mg represents the total mass of the structure.  Thus, the 

f; 

attached system is given by 

loss factor contribution ri, provided to the structure by the 

n  = —        . (3-13) 
S  1+Z /Z  2 
'AS' 

It is evident from the above that the loss factor contribut- 

tion made by an attached system depends on the original velocity 

Vg at the attachment point.  If this point is a node for which 



Vg = 0, then clearly n^^ = 0.  If the attachment point is an anti- 

node, on the other hand, then |V P/v^ may be relatively large. 
s    ^ 

For example, for beam-like structures with uniformly distributed 

mass Iv I2/v2 « 2 in this case, and for plate-like structures with 
s    " — 

uniformly distributed mass, |V |^/v? » 4.  However, for a random 

attachment point one finds that on the average |v p/v^ = 1, 
s    " 

again for systems with uniformly distributed mass. 

Equation 3-13 also indicates that the relation of the 

attached system's impedance Z^ to the impedance Zg of the 

structure at the attachment point has a significant effect on the 

loss factor contribution TIR.  Ry appropriate differentiation 

procedures one finds that TIA takes on the greatest value if the 

well-known impedance-matching condition is satisfied - that is, 

if Z^ is equal to the complex conjugate of Zg.  For this 

situation 

-   |Z |2 |V |2 

(^J    =  -Zr -^ ^- (3-14) A max   (ijM   4R    —„ s    s   v2 

where Rg denotes the real part of the structure's impedance at 

the attachment point (and here is equal to R^). 

It should be noted at a structural resonance, the imaginary 

part of the structural impedance vanishes, so that Zg = Rg, and 

the maximum loss factor contribution for this case becomes 

R   |v |2 

(%^    = T^ ^—   • (3-15) A max   4toM   —„ 
s  v^ 

res " 



4.   ANALYSIS OF TAPERED BEAM ABSORBERS 

4.1  Motivations for Analysis 

In Section 2, the idea of waveguide absorbers was illus- 

trated in terms of uniform or tapered rods (Figs. 3 and 4) that 

propagate compressional (longitudinal) waves along their length. 

Although such longitudinal waveguides are relatively easy to 

visualize and analyze, they are of limited practical interest. 

The comparatively high wavespeeds associated with compressional 

waves in commonly available materials restrict the utility of 

absorbers consisting of compressional waveguides to freguency 

regions that are higher than those usually of concern. 

The speeds of flexural waves typically are much lower than 

those of compressional waves.  Flexural waveguide absorbers there- 

fore may be expected to be effective in the frequency domains of 

interest for structural and mechanical system applications.  In 

fact, the waveguide absorbers that have been built and tested for 

practical applications (Refs. 7, 8) rely either entirely or pre- 

dominantly on flexural wave action. 

A flexural waveguide absorber may be visualized readily in 

terms of a beam attached to the vibrating system from which 

energy is to be extracted.  Figure 5 is a schematic sketch indi- 

cating how a double-cantilever may be attached to such a system 

via a rigid stand-off connection. 

As is the case for waveguide absorbers that rely on compres- 

sional waves, flexural waveguide absorbers need not be tapered to 

function, but tapered flexural absorbers may be expected to be 

lighter and to be damped more effectively by a given treatment 

than similar absorbers with uniform cross-sections.  The analysis 

presented in the present section was undertaken therefore to pro- 

vide an understanding of the parameters that affect the perform- 

ance of tapered flexural waveguide absorbers. 

10 



4.2  Impedance of Tapered Beam 

General sinusoidal flexure 

The equation of lateral motion of a slender beam, in absence 

of rotatory inertia and transverse shear effects, may be written 

(Ref. 9) as 

^ [El ii^] + PAI^ = 0 (4-1) 

where u denotes the lateral displacement, x a length-wise coordi- 

nate, and t, time.  The beam's properties are represented by the 

elastic modulus E and density p of the material, and by the area 

A of the beam's cross section and its centroidal moment of 

inertia I.  In general, both El and ph  may be functions of x. 

For the case of sinusoidal motion one may introduce complex 

(phasor) notation and define 

u = Ue"^*^^ (4-2) 

where U denotes the phasor of u.  If E and p are constant, so 

that 

c = /E/p (4-3) 

represents the constant longitudinal wavespeed in the beam 

material, one may reduce Eq. 4-1 to the following differential 

equation for U(x): 

lil.diU^2^diU^jdHj^^a^y   ^ (4_4) 

dx2   dx2      °^   dx3      dx'*      c2 

The solutions for U clearly depend on the I(x) and A(x) 

functions.  Although one may conceive of various beam configura- 

tions that are of practical interest, closed-form mathematical 

solutions can be obtained for only very few.  It is instructive 

to investigate the case that is most easily analyzed - that of a 

11 



beam of uniform thickness with exponentially varying width, for 

which one may take 

I(x) = loe"^^'^   , A(x) = A^e'^^""        .    (4-5) 

Substitution of these relations into Eq. 4-4 permits one to 

reduce that equation to 

(23)2 dlU _ 43 dfU ^ d^ ^ 32U (4_6) 
dx2     dx3   dx"* 

where 

B = oj/cr ,        r = /IQ/AQ   . (4-7) 

Note that r represents the radius of gyration of the beam cross- 

sectional area at x = 0. 

For assumed solutions of Eq. 4-6 of the form U = e^^,   one 

finds that p must satisfy 

p2[(2B)2 - 4BP + p2] = B2 (4_8) 

and thus 

p = 6 ± /6^ ± R   . (4-9) 

The general solution of Eq. 4-6 therefore may be written as 

U(x) = e^^^ [C^^e'^''"^^^ + C_^e-'^'^'^^+^ + C^_e'^*'"^^^ 

+ C__e-^^'^^] (4-10) 

where the C's are constants that depend on the boundary condi- 

tions. 

12 



Cutoff frequency for energy propagation 

For the case where B   <   Q^,   all four values of p of Eq. 4-9 

are real quantities, and all four terms of Eq. 4-10 correspond to 

non-propagating components.*  In this case no energy propagates 

along the beam.  For B > $2, however, one may rewrite Eq. 4-10 as 

U(x) = e^'^rc^^e^*'^^^ + C .'^^^^  + c  e^'^^^'^^ L   -f.-f. _+ ^_ 

+ C__e-J^''^ (4-11) 

where the last two terms correspond to propagating components. 

In view of Eq. 4-7, there thus corresponds to B = e2 ^ "cut- 

off" frequency OJQ, given by 

COQ = crB2 (4-12) 

which marks the dividing line between non-propagating and propa- 

gating conditions; energy propagation occurs only for uj > CDQ. 

Driving-point impedance 

Consider now a semi-infinite beam extending from x = 0 in 

the positive x direction, with excitation applied at x = 0 and 

acting at a frequency that is above the cutoff frequency.  If 

U(x) is to remain finite, then C^^. must vanish.  Furthermore, the 

*If a is real and positive, motion described by u = Ce   e -'   = 

Qg_ax jo)  corresponds to all points moving in phase, but with 

different amplitudes.  On the other hand, u = De-'    "^   corre- 
sponds to a wave traveling in the direction of positive x, and 

u = DeJ  " '^       corresponds to a wave traveling in the direction 
of negative x.  If D is constant, then the motions are every- 
where of the same amplitude, but not of the same phase.  If D is 
a function of x, then so is the amplitude (see Ref. 10). 

13 



condition that no energy propagates from infinity toward the 

origin requires that C  vanish.  For this case, then, Eq. 4-11 

may be rewritten as 

U(x) =c_,e^^ - ''^^^^. C,_e^^ " ^^^^^^   .  (4-13) 

The shear force that acts on the beam is given by 

3x2 

and for a beam with constant E and with cross-sectional proper- 

ties that vary as given by Eq. 4-5, obeys 

0 - [-23   +  ] EIQC   ^ e -^     . (4-15) 
dx2   dx3 

The impedance of the beam at the origin x = 0, in view of 

the definition of impedance, obeys 

^B = JU7dt\x=0 (4-16) 

In view of Eqs. 4-2, 4-15 and 4-16, 

EIQ[-2eU"(0) + U"'(0)] 

'B ■= ^JZ^>   ' <^-i" 

where the primes indicate differentiation with respect to x.  By 

substitution for U from Eq. 4-13 and requiring the beam to be 

rotation- free at x = 0 (as for a rigidly guided beam or one that 

is half of a beam part that is symmetric about the origin), - 

i.e., requiring U'(0) = 0, one finds after considerable manipu- 

lation that one may rewrite Eq. 4-17 for frequencies above the 

cutoff frequency as 

Zg = Rg + jjg = 2m^uiQ    [<t>p,(F) + j<t'j(F)] (4-18) 

14 



where 

(t)^(F) = /F-1 [/I + 1/F + 1//F]2 (4-19) 

<t)j(F) = 2/F + (1-2/F) /1+F 

F = a)/a)Q 

and where 

_2 g Y 
m  = /  PAQ e     dx = pAo/2B (4-20) 

corresponds to the total mass of the semi-infinite beam under 

discussion. 

For high frequencies - that is, for F >> 1 - one finds that 

(t)j^ « 4>j " /F, so that 

Z 
B F >> 1   ^''O "V ^ ^^"^^^ " ^^0 "^^^^ (^ + J)   •      (4-21) 

This is just one half of the impedance of an infinite beam (Ref. 

10) with constant cross-section area AQ, in agreement with what 

one would expect.* 

One may also observe that (j)o(l) = 0, implying that R = 0 

for u) = U)Q, or that no energy is absorbed by the beam at the cut- 

off frequency.  Again, this agrees with what one would expect, 

since no energy can propagate along the beam at and below the 

cutoff frequency. 

*The beam analyzed here is serai-infinite and has the same con- 
straint at X = 0 as an infinite beam, where zero rotation at the 
origin is enforced by symmetry.  Because no energy is reflected 
back to the driving point, only the beam properties at this 
point come into play. 
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For frequencies below the cutoff frequency, on the other 

hand, (J)^ vanishes and one may show that 

F << 1 
juim 

B 
(4-22) 

At these low frequencies, thus, the impedance of the beam is just 

that of a rigid mass equal to that of the beam - once again as 

one would expect. 

4.3  Loss Factor Contribution of Tapered Beam as Waveguide 
Absorber 

The loss factor contribution rig that a tapered beam makes to 

a vibrating system to which it is attached may be calculated by 

substituting the beam's impedance into Eq. 3-13 in place of the 

general attached-system impedance.  For the semi-infinite tapered 

beam discussed in the foregoing paragraphs, one thus finds one 

may use Eqs. 4-18 and 4-19 to write 

2m   ii 
B  ^R 

|V^|2/v2 

n 
M 

0 B ^R   -^ j 

(4-23) 

1 + 

S 

This expression may then be employed to investigate how this 

loss factor contribution to specific structures varies with the 

ratio of the absorber mass to the structure mass, with the fre- 

quency ratio F and with the other parameters appearing in this 

expression. 

4.4  Rotational Excitation of Tapered Beam 

The analyses presented in the foregoing paragraphs were 

based on the assumption that the tapered beam was excited by a 

pure force and that its rotation at the driving point was zero. 
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Although this assumption may constitute a realistic approximation 

to many practical situations - particularly to those where there 

exists a single fastening point and where thus the rotational 

stiffness of the attachment is relatively small - it is of inter- 

est to investigate the loss factor contribution resulting from 

rotational inputs to the tapered beam. 

If one notes that the moment Mg and the angular velocity n 

at the origin of a beam are given by 

M  = B El Aiii] 
9x2 x=0 

"   9x3tJx=0 

(4-24) 

(4-25) 

then one may evaluate the rotational driving point impedance 

Zee = ^B/" (4-26) 

of a tapered beam above its cutoff frequency by substituting Eq. 

4-13 into the foregoing expressions and using the boundary condi- 

tion U(0) = 0.  The result may be written as 

^9B   ''^eB + jj 98 

El 

Brc 
0 r/F-1   . /F+1 - 2, 

[-^T- + 3  ^ ] (4-27) 

This loss factor contribution due to energy transmitted to 

an attached absorber by angular motion at the attachment point 

may be written, in analogy to Eq. 3-13, as 

6B 
u)M 

1 + 

Vv2 

GB 

es 

(4-28) 
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where Z-_ denotes the point-moment impedance of the structure to 

which the absorber beam is attached and |n | represents the 

amplitude of the angular velocity of the structure at the attach- 

ment point in absence of the absorber.  Both Z.  and n  here 

correspond to the direction related to bending of the attached 

beam about an axis perpendicular to its length. 

In order to compare TIQ to r\,   one needs to know the relation 

between |n | and |V |.  For plate-like structures, this is com- 

plicated; it depends both on the mode shape and on the orienta- 

tion of the absorber beam.  For a structure consisting of a uni- 

form beam whose axis is parallel to that of the absorber beam, 

this relation is simpler, but still depends on the mode shape and 

on the specific location of the attachment point.  However, one 

determines that 

In |2 = k2 |V2| (4-29) 
s a    s   s a 

where the added subscript a indicates the spatial average of the 

quantity. Here kg denotes the wavenumber of the flexural vibra- 

tion of the structural beam and obeys 

k2 =   (ll)' = _!L_ (4_30) 
s   ^X ^    r C^ 

s Ls 

where X denotes the bending wavelength of the structural beam at 

frequency w; r^ represents the radius of gyration of that beam's 

cross-section, and Cr denotes the longitudinal wavespeed in the 

material of that beam. 

For the case where |n | and |V | are related as in Eq. 4-29, 

one finds that 

r C   |1 + Z /Z  12 
n    s Ls     e s6 

"^e   "^"^   |i + z/z |2 
s 

[/I + 1/F - 1//F]2   .       (4-31) 
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One may note that the expression involving the frequency ratio F 

here is equal to (/2 - 1)2 « .17 for F = 1 and increases mono- 

tomically toward unity for large F.  This implies that the rota- 

tional loss factor contribution ri- here is equal to the transla- 

tional contribution n for large F, but that ri„ > n for small F - 

provided that the terms of Eq. 4-31 that do not contain F explic- 

itely are equal to unity, something that may occur only in some 

special cases that are beyond the scope of the present study. 
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5.   EXPLORATORY EXPERIMENTS 

5.1  Experimental Absorbers and Plate Structure 

A brief experimental study was carried out in order to 

investigate the applicability of the foregoing theoretical 

results and to gain insight into the performance of broadband 

absorbers.  A tapered beam (see Fig. 6) was built and its 

impedance measured in order to provide a check on the theory 

developed in Section 4.2.  In addition, two disks, each with 8 

spiral cuts (see Fig. 7) were built.  These disks were modeled 

after similar ones described by the German investigators [7]; 

they were expected to act like a multi-beam vibration absorber 

and could be constructed relatively easily.  The impedances of 

the two spiral disks (individually and in combination) were 

measured.  In addition, their effect on the loss factor of an 

experimental plate was evaluated experimentally in order to 

assess the validity of the theory developed in Section 3.2. 

Each absorber was made of 1/16 in. aluminum plate with 1/8 

in. thick damping material (E-A-R ISODAMP C-2003) adhered to the 

surface.  The manufacturer's literature give the following values 

of the damping material properties at room temperature and in the 

frequency range 100 - 10,000 Hz: 

p = 1714 kg/m3 (107 Ib/ftM 

E = 2 X 109 N_ 

m2 

n = 0.5 
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Figure 8 shows the experimental plate, used as the "struc- 

ture" to which the absorbers were attached in order to investi- 

gate their effect on the structure's loss factor.  The plate was 

designed to have no parallel edges, so as to facilitate achieving 

a fairly uniform vibration field.  Holes where the absorbers 

could be bolted to the plate were provided at three positions: 

position 1 near the center of the plate, position 2 near an edge, 

and position 3 at an in-between location.  All of the results 

presented here are for the absorber attached at position 3, which 

is expected to be the most representative location.  Figure 9 

shows the three methods used for attaching the absorbers to the 

plate; they were selected for their convenience and so as to 

provide enough standoff to permit the absorbers to vibrate 

freely. 

5.2  Impedances 

Figure 10 shows the instrumentation system used for measur- 

ing the mechanical impedance of the absorbers and the plate.  The 

test specimen was subjected to broadband excitation via an impe- 

dance head attached to an electrodynamic shaker. 

An HP 5423A Dual Channel Analyzer was used to obtain the 

real and imaginary parts of the impedance from the simultaneous 

force and acceleration signals generated by the impedance head. 

Figure 11 shows the experimentally determined real and imag- 

inary parts of the input impedance at the center of the tapered 

beam (including the mass of the studs, nuts and washers, shown in 

Fig. 9 as used to attach the single absorbers to the plate).  The 

measured real and imaginary parts of the impedance of this 

attachment hardware alone are shown in Fig. 12.  As expected, the 

impedance of the attachment hardware is essentially that of a 

mass; i.e. the attachment hardware responds as a rigid body with 

an impedance Z^ttachment " >^att'  ^^^^^ ^att = "^^   9"^^ 
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is the mass of the attachment hardware plus the impedance head 

mass in front of the force gage of the impedance head. 

The impedance of the tapered beam alone (without attachment 

hardware) was obtained by subtracting the real and imaginary 

parts of Zg^|.g^,^j^gj^^ (Fig. 12) from the real and imaginary parts 

of Zbeam + attachment ^^^^-   l^)*  ^he results are shown in 

Fig. 13. 

Also shown in this figure as dashed lines are the theoret- 

ical real and imaginary parts of the impedance of a centrally- 

driven infinitely long tapered beam (symmetrical about the driv- 

ing point at X = 0, with the beam tapered in both the +x and -x 

directions).  The theoretical impedance values shown are twice 

those for a one-sided semi-infinite beam, given by Eq. 4-18; R^ = 

19.0 kg/s and f^ = 2710)^ = 29.0 Hz. 

It is clear from this figure that the impedance of the 

experimental tapered beam does not exhibit the theoretical 

infinitely-long beam behavior.  Even at the high frequencies 

where the impedance no longer exhibits the effects of individual 

resonants, the real part of the impedance does not appear to be 

approaching the theoretical solution.  A possible explanation is 

that the center portion of the experimental beam, which is not 

covered by damping material (see Fig. 6), deforms like a spring 

and isolates the mass of the beam to some extent. 

Figures 14 and 15 show the measured impedances of a 

centrally-driven 8-spiral disk (see Fig. 7) with and without 

attachment hardware. Figure 16 show the measured impedance of two 

8-spiral disks, arranged as shown in Fig. 10b. 

The results of measurements of the plate impedance are shown 

in Fig. 17.  The coherence between the force and acceleration 

signals was poor at frequencies below about 3000 Hz, so that 

these measured impedances are inadequate.  For subsequent calcu- 
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lation purposes, the theoretical impedance for an infinite plate 

(shown as dashed lines in Fig. 17) was used. 

5.3  Loss Factors 

The experimental set-up used for measuring the loss factor 

of the plate, with and without the absorbers attached, is shown 

in Fig. 18.  The plate was excited in 1/3 octave bands by the 

sound pressure from an acoustic driver placed close to the plate. 

The excitation was switched off and the time history of the 1/3 

octave band acceleration level (in dB) of the plate was obtained 

using a Graphic Level Recorder.  The reverberation time T..* for 
6 0 

each 1/3 octave band was determined from the slope of the accel- 

eration level time history curve (see for example. Fig. 20).  The 

loss factor was then computed from (Ref. 10) 

2.2 
T1 = ,^-^ (5-1) 

where f is the 1/3 octave band center freguency. 

Figures 20-22 present the measured loss factors of the plate 

with an 8-spiral disk bolted to it, an 8-spiral disk expoxied to 

it, and two 8-spiral disks bolted to it, all at position 3.  Also 

shown on these figures are the measured loss factors for the 

undamped plate (rip)f as well as the calculated loss factors. 

The calculated loss factor of the plate with the attached 

absorber was obtained by adding to the measured loss factor rip of 

the plate without the absorber the calculated plate loss factor 

contribution ri, made by the absorber.  The latter was calculated 

from Eq. 3-13, using for ^A ~ ^A "*" ^'^A ^^® measured driving-point 

(force) impedances of the absorbers and the attachment hardware. 

*Tcn is the time in seconds required for the acceleration level 60 

to decay by 60 dB. 
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assuming |V I^/v^ = 1, and using for Zg the theoretical impedance 

of an infinite plate;* that is 

Zg = Zp « 2.3 CLph2/(l-v2) (5-2) 

where h denotes the plate's thickness, p the density, Cj^ the 

longitudinal wave speed and v the Poisson's ratio of the plate 

material.  For the experimental plate, Zg = 165 kg/s and Mg = 

6.37 kg. 

5.4  Discussion of Results 

Figures 20-22 indicate that the addition of the absorbers 

typically increased the plate loss factor by a factor of about 2. 

The theoretically obtained loss factors shown in these figures 

are of the same order of magnitude as the measured ones, although 

they appear to be too high at frequencies below about 600 Hz. 

The reasons for this are not clear.  Possible explanations 

include errors in the measured impedances of the absorbers, the 

assumption that the experimental plate impedance can be modeled 

as that of an infinite plate, and inaccuracies in the measurement 

of the plate loss factors.  Since the measured impedance of the 

two 8-spiral disks in combination agrees well with the sum of the 

impedances of the individual 8-spiral disks measured individu- 

ally, it is probable that the experimentally determined absorber 

*From Ref. 10 one may calculate that a one-third octave band 
centered at 125 Hz contains 5.5 modes of the experimental plate, 
and that the number of modes in other one-third octave bands is 
proportional to the band's center frequency.  Thus, many plate 
modes typically occur in any given one-third octave band in the 
measurement rangs..     This fact implies that the spatial average 
condition Iv \^/v^   = 1 should be a reasonable one to apply and 

s    " 
also that the infinite plate impedance should be a good approxi- 
mation in the frequency-average (Ref. 6). 
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impedances are correct.  Also, since the number of resonant modes 

in each 1/3 octave band for the experimental plate is high (see 

footnote accompanying Eq. 5-2), the infinite plate impedance 

should be a good approximation to the frequency-average of the 

impedance in each 1/3 octave band considered here.  Thus, inaccu- 

racies in the measured loss factors appear to be the most likely 

source of the discrepancies between theory and experiment. 

It is instructive to compare the loss factor contributions 

of the experimental spiral disk absorbers with the comparable 

maximum loss factor contributions that can be obtained - i.e., 

those obtained by means of an absorber that is impedance-matched 

to the plate.  For this purpose, values of n /(|v |^/v?) calcu- 
A    p    " 

lated from Eq. 3-13 for the experimental absorbers (using the 

measured values of Z^ and the theoretical value of Z„) are shown 

in Fig. 23 together with the maximum values calculated from Eq, 

3-14.  One may note that in the high frequency range (above about 

2000 Hz) the absorber with the least attachment hardware (i.e., 

the one epoxied to the plate) gives the best performance (nearly 

optimum).  For this absorber configuration, the imaginary part of 

the impedance is very close to zero, thus approximately satisfy- 

ing that part of the impedance matching condition for maximizing 

Ti- that requires the imaginary part of Z^ to be the negative of 

that of Zg (since the plate impedance Z^ is purely real).  For 

the other two absorbers (with more attachment hardware mass) the 

imaginary parts of Z^ at high frequencies are larger, resulting 

in poorer impedance matching. 

Figure 24 presents a comparison of the loss factor increases 

achievable for the experimental plate with three idealized damp- 

ing treatments of the same weight - i.e., 168 gm or about 2.6% of 

the plate weight.  These treatments consist of: 

a)  An 8-spiral disk absorber, ideally impedance-matched to 

the plate, attached to it so that |V I^/v^ = 1 (see 
I   g I       u 

footnote accompanying Eq. 5-2) and without taking advan- 
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tage of additional damping potentially available from 

rotational excitation of the absorber. 

b) A thin, rigidly attached single layer of a highly effec- 

tive viscoelastic material with assumed frequency- 

independent loss modulus (E-A-R ISODAMP C-2003; see p. 

20 for property values). 

c) An optimized constrained layer treatment consisting of 

an aluminum cover plate of about 2 mils thickness 

attached to the basic plate via an extremely thin layer 

of an ideal viscoelastic material with frequency- 

independent loss factor of 0.5 and low shear modulus, 

designed for optimum performance at 1 kHz. 

Also shown in the figure is a curve corresponding to the best 

practically feasible constrained layer treatment, as discussed 

later. 

The loss factors of the theoretical viscoelastic layer 

treatments were calculated using relations from Ref. 11 and are 

based on the assumption that the viscoelastic materials can be 

obtained in suitable thicknesses and can be attached to the 

plate(s) by means of extremely thin adhesive layers.  In fact, a 

free viscoelastic layer would need to be about 3 mils thick, and 

the aluminum cover plate atop a constrained viscoelastic layer 

would need to be about 2 mils thick for the treatments to weigh 

the same as a single waveguide absorber.  These thicknesses are 

marginally practical. 

The frequency at which the greatest loss factor of a plate 

with a constrained layer treatment occurs varies very nearly 

inversely with the thickness of the viscoelastic material and 

directly as the material's shear modulus.  By selecting different 

viscoelastic layer thicknesses one can thus in effect shift the 

corresponding loss factor curve parallel to the frequency axis. 

Extremely thin constrained viscoelastic layers of practical 
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materials thus correspond to damping peaks at very high frequen- 

cies and tend to result in very low loss factors at the frequen- 

cies of interest.  The theoretical curve indicated in Fig. 24 

corresponds to a 0.1 mil thick viscoelastic material with a shear 

modulus of the order of 10 psi; a lower modulus and/or greater 

viscoelastic material thickness would be required to shift the 

damping peak to lower frequencies. 

The foregoing constrained layer parameters are clearly 

impractical.  If one assumes a 1.8 mil covering layer constrain- 

ing a 0.5 mil layer of a viscoelastic material with the lowest 

practically likely shear modulus of 1000 psi one obtains what is 

probably the best practically achievable configuration.  Its 

performance, as evident from the figure, is considerably poorer 

than that of the ideal configuration. 

It appears from Fig. 24 that for a uniform thin plate like 

the one investigated experimentally, optimized constrained or 

free viscoelastic layer treatments can in theory provide greater 

damping than an optimum waveguide absorber of the same weight, 

except perhaps at low frequencies.  However, a waveguide absorber 

here may be expected in practice to outperform a constrained 

layer treatment over most of the frequency range of concern, as 

well as having constructional advantages (e.g., ease of manufac- 

ture, attachment, dimensional control) over both types of visco- 

elastic layer treatments. 
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6.   CONCLUDING REMARKS 

6.1  Summary 

Expressions have been developed that indicate the loss fac- 

tor contributions which idealized tapered beam absorbers can make 

to vibrating systems to which they are attached.  Although one 

can conceive of other types of absorber configurations, tapered 

beams may be considered representative of absorbers that work on 

the basis of flexural motions of damped systems. 

The analytical expressions, which may be used for design 

guidance, display the important parameter dependences.  As also 

is evident from experimental results, these expressions indicate 

the importance of matching the absorber's impedance to that of 

the structure to which it is to be attached; mismatching tends to 

reduce an absorber's effectiveness severely. 

It is also evident from the analytical results for a tapered 

beam attached to a structure that for the case where the struc- 

ture's impedance is much greater than the attached absorber's 

impedance, the loss factor contribution made by the absorber is 

proportional to the ratio of the absorber mass to the structure 

mass. 

The sample absorbers used for the exploratory plate damping 

experiments reported here were constructed ad hoc, essentially 

copying similar absorbers described in the literature, without 

any effort at development.  The measured mechanical impedance 

data show that these sample absorbers generally do not exhibit 

the desired waveguide behavior and also do not perform like the 

absorbers for which data appears in the literature.  It appears 

that more careful design and development are required to obtain 

waveguide absorbers with improved practical performance. 

Although the results obtained in this too brief preliminary 

study are incomplete and far from fully conclusive, it appears 

that appropriately developed and well-selected waveguide absorb- 
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ers are promising means for providing significant amounts of 

structural damping.  They may be expected to be particularly 

useful for relatively massive structures and at relatively low 

frequencies, for which viscoelastic coatings and laminates tend 

to be ineffective, or for other configurations, such as thin- 

walled structures, where viscoelastic treatments may be too heavy 

or otherwise impractical.  They may be especially attractive for 

vibration control applications in retrofit situations. 

6.2  Recommendations 

In view of the promising results that have been described in 

the literature and the preliminary nature of the results of the 

exploratory investigation summarized here, it appears that wave- 

guide absorbers merit further study. 

Development efforts appear advisable that address (a) better 

consideration of rotational inputs, to take advantage of this 

additional path for extracting energy from a vibrating structure, 

(b) improved attachment details to ensure the transfer of energy 

into energy-dissipating motions of the absorbers, and (c) absorber 

configurations with higher modal densities and greater built-in 

damping, to obtain better waveguide action at lower frequencies. 

It would also be of value to carry out comparison studies of 

waveguide absorbers and more conventional damping means, particu- 

larly for relatively large and massive structures, for which wave- 

guide absorbers may be expected to "be particularly advantageous. 
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FIG.    3.      SCHEMATIC   SKETCH   OF   WAVEGUIDE   ABSORBER   CONSISTING   OF 
DAMPED   ROD   CARRYING   LONGITUDINAL  WAVES. 
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1    I ALUM. PLATE (1/16" THICK) HOLE FOR 3/8" STUD 
DAMPING MATERIAL 

PIG.    7.      PATTERN   FOR   8-SPIRAL   DISK. 
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FIG. 8.  EXPERIMENTAL PLATE STRUCTURE. 

Thickness = 0.08" 
Area = 1800 in^ 
Mass = 6.37 kg 
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FIG. 11.  IMPEDANCE OF TAPERED REAM WITH ATTACHMENT HARDWARE. 

38 



6.0000 K 

IMAG 

THEORETICAL 
IMPEDANCE OF 
a 48 gm MASS 

0.0 
6.0000 K 

FIG. 12.  IMPEDANCE OF ATTACHMENT HARDWARE FOR SINGLE ABSORBER. 

39 



6.0000 K 

-1.0000 
K 

6.0000 K 

FIG. 13.  IMPEDANCE OF TAPERED BEAM WITHOUT ATTACHMENT HARDWARE. 
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FIG.    14.      IMPEDANCE   OF   8-SPIRAL   DISK   WITH   ATTACHMENT   HARDWARE, 
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FIG. 15.  IMPEDANCE OF 8-SPIRAL DISK WITHOUT ATTACHMENT HARDWARE. 
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FIG. 16.  TMPRDANCE OF TWO 8-SPIRAL DISKS WITH ATTACHMENT 
HARDWARE. 
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FIG. 17.  IMPEDANCE OF EXPERIMENTAL PLATE WITHOUT ATTACHMENT 
HARDWARE:    MEASURED AT POSITION 3;   
THEORETICAL FOR INFINITE PLATE. 
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FIG. 18.  INSTRUMENTATION SYSTEM FOR DECAY TIME MEASUREMENTS, 
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FIG. 19.  ACCELERATION LEVEL TIME HISTORY FOR UNDAMPED PLATE IN 
THE 160 HZ 1/3 OCTAVE BAND. 
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FIG. 20.  MEASURED AND PREDICTED LOSS FACTORS FOR PLATE WITH ONE 
8-SPIRAL DISK ABSORBER BOLTED AT POSITION 3. 
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FIG. 21.  MEASURED AND PREDICTED LOSS FACTORS FOR PLATE WITH ONE 
8-SPIRAL ABSORBER EPOXIED AT POSITION 3. 
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FIG. 22.  MRASURED AND PREDICTED LOSS FACTORS FOR PLATE WITH TWO 
8-SPIRAL DISK ABSORBERS BOLTED AT POSITION 3. 
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FIG. 23.  COMPARISON OF CALCULATED VALUES OF n /(IV |2/v2) FOR 
As" 

EXPERIMENTAL ABSORBERS WITH THE THEORETICAL MAXIMUM FOR 
AN ATTACHED ABSORBER. 
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FIG. 24.  COMPARISON OF LOSS FACTORS ACHIEVABLE IN THE EXPERI- 
MENTAL PLATE BY MEANS OF DAMPING TREATMENTS WITH 2.6% OF 
PLATE WEIGHT. 
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